آکادمی آموزشی کندوی دانش
تشخیص بات‌نت با استفاده از الگوریتم انتخاب منفی، شبکه عصبی کانولوشن و روش‌های طبقه‌بندی

زمان مطالعه: 9 دقیقه

مقاله سوم تشخیص بات نت

تشخیص بات‌نت با استفاده از الگوریتم انتخاب منفی، شبکه عصبی کانولوشن و روش‌های طبقه‌بندی

 

 

درباره مقاله

https://link.springer.com/article/10.1007/s12530-020-09362-1

Cite this article

Hosseini, S., Nezhad, A.E. & Seilani, H. Botnet detection using negative selection algorithm, convolution neural network and classification methods. Evolving Systems 13, 101–115 (2022). https://doi.org/10.1007/s12530-020-09362-1

Download citation

  • Received

  • Accepted

  • Published

  • Issue Date

  • DOIhttps://doi.org/10.1007/s12530-020-09362-1

extended data figure 2

extended data figure 4

extended data figure 6

extended data figure 7

extended data figure 8

extended data figure 9

extended data figure 14

extended data figure 18

منابع

  • Ahmed AM, Duran O, Zweiri Y, Smith M (2019) Quantification of hydrocarbon abundance in soils using deep learning with dropout and hyperspectral data. Remote Sens 11(16):1938

    Article Google Scholar 

  • Ahmed AA, Jabbar WA, Sadiq AS, Patel H (2020) Deep learning-based classification model for botnet attack detection. J Ambient Intell Humaniz Comput 1–10

  • Akoglu H (2018) User’s guide to correlation coefficients. Turkish J Emerg Med 18(3):91–93

    Article Google Scholar 

  • Angelov P, Sperduti A (2016) Challenges in deep learning. In ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

  • AsSadhan B, Moura JM (2014) An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic. J Adv Res 5(4):435–448

    Article Google Scholar 

  • Baruah S (2019) Botnet detection: analysis of various techniques. Int J Comput Intell IoT 2(2)

  • Bezerra CG, Costa BSJ, Guedes LA, Angelov PP (2016) An evolving approach to unsupervised and real-time fault detection in industrial processes. Expert Syst Appl 63:134–144

    Article Google Scholar 

  • Calabrese B (2018) Data cleaning. Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, 472

  • Chen SC, Chen YR, Tzeng WG (2018) Effective botnet detection through neural networks on convolutional features. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference On Big Data Science and Engineering (TrustCom/BigDataSE) (pp. 372–378). IEEE

  • Dhayal H, Kumar J (2018) Botnet and P2P botnet detection strategies: a review. In: 2018 International Conference on Communication and Signal Processing (ICCSP) (pp. 1077–1082). IEEE

  • Dong X, Hu J, Cui Y (2018) Overview of botnet detection based on machine learning. In: 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE) (pp 476–479). IEEE

  • Gaonkar S, Dessai NF, Costa J, Borkar A, Aswale S, Shetgaonkar P (2020) A survey on botnet detection techniques. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1–6). IEEE

  • Hoque N, Bhattacharyya DK, Kalita JK (2015) Botnet in DDoS attacks: trends and challenges. IEEE Commun Surv Tutorials 17(4):2242–2270

    Article Google Scholar 

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

  • Kasabov NK (2019) Time-space, spiking neural networks and brain-inspired artificial intelligence. Heidelberg: Springer. 1 ed. Berlin, 2018. 738 p

  • Kaur G (2018) A novel distributed machine learning framework for semi-supervised detection of botnet attacks. In 2018 Eleventh International Conference on Contemporary Computing (IC3) (pp. 1–7). IEEE

  • Kebande VR, Venter HS (2014) A cognitive approach for botnet detection using Artificial Immune System in the cloud. In: IEEE 2014 Third International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec) (pp. 52–57)

  • Ko B, Kim HG, Choi HJ (2017) Controlled dropout: a different dropout for improving training speed on deep neural network. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 972–977). IEEE

  • Li X, Wang J, Zhang X (2017) Botnet detection technology based on DNS. Future Internet 9(4):55

    Article Google Scholar 

  • Maeda S, Kanai A, Tanimoto S, Hatashima T, Ohkubo K (2019) A botnet detection method on SDN using deep learning. In: 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1–6). IEEE

  • Mathur L, Raheja M, Ahlawat P (2018) Botnet detection via mining of network traffic flow. Procedia Comput Sci 132:1668–1677

    Article Google Scholar 

  • McDermott CD, Majdani F, Petrovski AV (2018) Botnet detection in the internet of things using deep Learning approaches. In: 2018 international joint conference on neural networks (IJCNN) (pp 1–8). IEEE

  • Mighan SN, Kahani M (2020) A novel scalable intrusion detection system based on deep learning. Int J Inf Secur 1–17

  • Rashid N, Iqbal J, Mahmood F, Abid A, Khan US, Tiwana MI (2018) Artificial immune system–Negative selection classification algorithm (NSCA) for four class electroencephalogram (EEG) Signals. Front Hum Neurosci 12:439

    Article Google Scholar 

  • Saurabh P, Verma B (2016) An efficient proactive artificial immune system based anomaly detection and prevention system. Expert Syst Appl 60:311–320

    Article Google Scholar 

  • Shi WC, Sun HM (2020) DeepBot: a time-based botnet detection with deep learning. Soft Comput

  • Thangapandiyan M, Anand PR (2016) An efficient botnet detection system for P2P botnet. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 1217–1221). IEEE

  • Torres P, Catania C, Garcia S, Garino CG (2016) An analysis of recurrent neural networks for botnet detection behavior. In 2016 IEEE biennial congress of Argentina (ARGENCON) (pp. 1–6). IEEE

  • Tosin SIT, Gbenga JR (2020) Negative selection algorithm based intrusion detection model. In 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON) (pp. 202–206). IEEE

  • Vormayr G, Zseby T, Fabini J (2017) Botnet communication patterns. IEEE Communications Surveys & Tutorials 19(4):2768–2796

    Article Google Scholar 

  • Wang J, Paschalidis IC (2016) Botnet detection based on anomaly and community detection. IEEE Trans Control Netw Syst 4(2):392–404

    Article MathSciNet Google Scholar 

  • Wang K, Huang CY, Lin SJ, Lin YD (2011) A fuzzy pattern-based filtering algorithm for botnet detection. Comput Netw 55(15):3275–3286

    Article Google Scholar 

  • Wang S, Yan Q, Chen Z, Yang B, Zhao C, Conti M (2017) Detecting android malware leveraging text semantics of network flows. IEEE Trans Inf Forensics Secur 13(5):1096–1109

    Article Google Scholar 

  • Yang Z, Wang B (2019) A feature extraction method for P2P botnet detection using graphic symmetry concept. Symmetry 11(3):326

    Article Google Scholar 

  • Yerima SY, Alzaylaee MK (2020) Mobile botnet detection: a deep learning approach using convolutional neural networks. In: 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA) (pp. 1–8). IEEE

  • Zhao D, Traore I, Ghorbani A, Sayed B, Saad S, Lu W (2012) Peer to peer botnet detection based on flow intervals. In: IFIP International Information Security Conference (pp. 87–102). Springer, Berlin, Heidelberg

  • Zhuang D, Chang JM (2019) Detecting peer-to-peer botnets through community behavior analysis. In: 2017 IEEE Conference on Dependable and Secure Computing (pp. 493–500). IEEE

دیدگاه و پرسش

برچسب‌ها: