آکادمی آموزشی کندوی دانش
حفاظت از حریم مصرف کننده خدمات سیستم های مراقبت بهداشتی در عصر هوش مصنوعی

زمان مطالعه: 3 دقیقه

مقاله چهارم محافظت از حریم خصوصی

حفاظت از حریم مصرف کننده خدمات سیستم های مراقبت بهداشتی در عصر هوش مصنوعی

Protecting consumer privacy in healthcare systems in the age of artificial intelligence

بهارک بهرامی

baharakbahrami8@gmail.com

حسین سیلانی

h.seilany@gmail.com

 

 

مقدمه

حریم خصوصی و حفاظت از داده ها در مراقبت های بهداشتی مبتنی بر هوش مصنوعی از اهمیت بالایی برخوردار است. سیستم‌هایی که در آن فناوری‌های هوش مصنوعی (AI) به طور فزاینده‌ای در حال استفاده هستند در مواجهه با شیوه‌های مبتنی بر هوش مصنوعی (AI)، پیگیری جامع‌تری از حمایت از مصرف‌کننده نیاز دارد. این درحالی است که مزایای بالقوه از هوش مصنوعی در مراقبت های بهداشتی بسیار زیاد است که نگرانی های قابل توجهی را در مورد این موضوع ایجاد می کند. هوش مصنوعی در سیستم های مراقبت های بهداشتی بر جمع آوری و ذخیره سازی داده های حساس وابسته هستند. داده های سلامت شخصی، از جمله سوابق پزشکی، اطلاعات ژنتیکی، و زمان واقعی داده های نظارت استفاده گسترده از چنین داده هایی برای تجزیه و تحلیل هوش مصنوعی را معرفی می کند. در این زمینه، این مقاله نگرانی های مختلف حریم خصوصی و حفاظت از داده های مصرف کننده یعنی بیماران در سیستم مراقبت های بهداشتی را که مجهز به هوش مصنوعی مجموعه و ذخیره سازی را بررسی می کند و همچنین برای رسیدگی به این نگرانی ها، این مقاله بهترین شاخص های کلیدی را برای حفظ حریم خصوصی و داده های مصرف کنندگان در سیستم مراقبت های بهداشتی را بیان کرده است.

 

واژگان كليدي:هوش مصنوعی، یادگیری ماشین، اطلاعات مراقبت های بهداشتی، حریم خصوصی بیمار،حفاظت از حریم خصوصی

توصیههای مهم در سیستمهای بهداشت هوش مصنوعی

اهمیت حریم خصوصی و حفاظت از دادهها

محرمانگی بیمار

امنیت داده

رضایت آگاهانه

استفاده ثانویه از داده‌ها

کاهش تبعیض و تبعیض

پایبندی به مقررات

حفظ اعتماد عمومی

 

سیستمهای بهداشت هوش مصنوعی

جمع‌آوری داده

تجزیه و تحلیل داده و پشتیبانی تصمیم‌گیری

تصویربرداری پزشکی و تشخیصی

برنامه‌ریزی درمان و پزشکی شخصی‌سازی شده

نظارت از راه دور بر بیمار

دستیارهای مجازی و ربات‌های چت

کشف دارو و تحقیقات بالینی

عملیات بهداشتی و مدیریت منابع

 

نگرانی‌های حریم خصوصی

دسترسی غیرمجاز و نقض داده

سوءاستفاده از داده و استفاده ثانویه

شناسایی مجدد داده‌های ناشناس

تبعیض و تبعیض الگوریتمی

کمبود شفافیت و قابلیت توضیح

شیوه‌های رضایت نامناسب

انتقال داده عبر مرز

 

رضایت آگاهانه و شفافیت

رضایت آگاهانه

استقلال بیمار

درک و آگاهی

گزینه‌های رضایت

رضایت مستمر

 

شفافیت

آزادی و وضوح

شفافیت الگوریتمی

ارتباط و آموزش

سیاست‌های کنترل داده

 

استفاده ثانویه از داده

رضایت و حریم خصوصی

ناشناس‌سازی و غیرشناسایی

حاکمیت داده و اخلاق

شفافیت و مسئولیت

توافقنامه‌های به اشتراک گذاری داده و همکاری

کمیته‌های اخلاق داده و فرآیندهای بررسی

 

حفاظت داده

کمینه‌سازی داده

رمزگذاری داده

کنترل دسترسی و مجوزهای کاربر

ناشناس‌سازی و غیرشناسایی

توافقنامه‌های به اشتراک گذاری داده

زیرساخت امن و شبکه

برنامه پاسخ به نقض داده

پایبندی به مقررات حریم خصوصی

حسابرسی و ارزیابی امنیت منظم

 

تکنیک‌های ناشناس‌سازی و غیرشناسایی

تجمیع داده‌ها

تعمیم

ماسک و حذف اطلاعات

انحراف

نمونه‌برداری از داده‌ها

حریم خصوصی تفاضلی

 

ملاحظات اخلاقی  

استقلال بیمار و رضایت آگاهانه

حریم خصوصی و محرمانگی

شفافیت و قابلیت توضیح

تعصب و عدالت

مسئولیت و پاسخگویی

نظارت انسانی و داوری حرفه‌ای

ارزیابی و بهبود مداوم

عدالت و دسترسی

پایبندی به مقررات

 

شیوه‌های بهتر برای حفاظت از حریم خصوصی و داده‌ها

کمینه‌سازی داده

رمزنگاری قوی

کنترل دسترسی و احراز هویت کاربر

ناشناس‌سازی و غیرشناسایی

تدابیر امنیتی قوی

حسابرسی و ارزیابی امنیت منظم

حفاظت از حریم خصوصی از طراحی

برنامه پاسخ به نقض داده

آموزش منظم کارکنان

رعایت مقررات

مدیریت ریسک شخص ثالث

حاکمیت و بازبینی داده‌ها منظم

 

کنترل دسترسی و مجوز کاربر

کنترل دسترسی بر اساس نقش (RBAC)

اصل کمترین امتیاز (PoLP)

احراز هویت کاربر

بازبینی منظم دسترسی کاربر

تفکیک وظایف

گزارش‌های حسابرسی و نظارت

دسترسی امن از راه دور

آموزش و آگاهی

محدودیت امتیازهای مدیریت

ارزیابی‌های امنیتی منظم

 

حسابرسی‌ها و نظارت‌های منظم

برنامه حسابرسی تعیین کنید

ارزیابی ریسک انجام دهید

حسابرسی کنترل‌های امنیتی

حسابرسی پایبندی به حریم خصوصی

حسابرسی حاکمیت داده

نظارت و تجزیه و تحلیل لاگ‌ها

آزمون پاسخ به حوادث

ارزیابی شخص ثالث

نظارت بر پایبندی

بهبود مداوم

آموزش و آگاهی

جذب حسابرسان مستقل

 

 

 

 

منبع

1  Schwab, K. (2016). The Fourth Industrial Revolution: What it means and how to respond. World Economic Forum. https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

2  Watson, D. S., Krutzinna, J., Bruce, I. N., et al. (2019). Clinical applications of machine learning algorithms: Beyond the black box. BMJ, 364, l886. https://doi.org/10.1136/bmj.l886

3  Fraser, H., Coiera, E., & Wong, D. (2018). Safety of patient-facing digital symptom checkers. Lancet, 392(10161), 2263–2264. https://doi.org/10.1016/S0140-6736(18)32819-8

4  Fogel, A. L., & Kvedar, J. C. (2018). Artificial intelligence powers digital medicine. NPJ Digital Med, 1(1), 5. https://doi.org/10.1038/s41746-017-0012-2

5  European Union. (2018). General Data Protection Regulation. https://gdpr-info.eu/

6  Seyedi, S., Griner, E., Corbin, L., Jiang, Z., Roberts, K., Iacobelli, L., … & Clifford, G. D. (2023). Using HIPAA (Health Insurance Portability and Accountability Act)–Compliant Transcription Services for Virtual Psychiatric Interviews: Pilot Comparison Study. JMIR Mental Health, 10, e48517.

7  Larson, D. B., Magnus, D. C., Lungren, M. P., et al. (2020). Ethics of using and sharing clinical imaging data for artificial intelligence: A proposed framework. Radiology, 295(3), 675–682. https://doi.org/10.1148/radiol.2020192536

8  Floridi, L. (2019). Translating principles into practices of digital ethics: Five risks of being unethical. Philos Technol, 32(2), 185–193. https://doi.org/10.1007/s13347-019-00354-x

9  Guan, J. (2019). Artificial Intelligence in Healthcare and Medicine: Promises, Ethical Challenges and Governance. Chin Med Sci J, 34(2), 76-83. doi: 10.24920/003611. PMID: 31315747

10 Budler, L. C., Gosak, L., & Stiglic, G. (2023). Review of artificial intelligence‐based question‐answering systems in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1487.

11 Sarker, M. (2024). Revolutionizing healthcare: the role of machine learning in the health sector. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 36-61.

12 Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., & Acharya, U. R. (2023). Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1485.

13 Tzanou, M. (2023). Health Data Privacy Under the GDPR. TAYLOR FRANCIS Limited.

14 IBM What Is Artificial Intelligence in Medicine? [(accessed on 14 September 2022)]. Available online: https://www.ibm.com/topics/artificial-intelligence-medicine

15 Zeng D., Cao Z., Neill D.B. Artificial Intelligence in Medicine. Academic Press; Cambridge, MA, USA: 2021. Artificial intelligence–enabled public health surveillance—From local detection to global epidemic monitoring and control; pp. 437–453. [CrossRef] [Google Scholar]

16 Alonso, A., & Siracuse, J. J. (2023, June). Protecting patient safety and privacy in the era of artificial intelligence. In Seminars in Vascular Surgery. WB Saunders.

17 Almalawi, A., Khan, A. I., Alsolami, F., Abushark, Y. B., & Alfakeeh, A. S. (2023). Managing security of healthcare data for a modern healthcare system. Sensors, 23(7), 3612.

18 Adeniyi, A. O., Arowoogun, J. O., Okolo, C. A., Chidi, R., & Babawarun, O. (2024). Ethical considerations in healthcare IT: A review of data privacy and patient consent issues. World Journal of Advanced Research and Reviews, 21(2), 1660-1668.

19 Alsyouf, A., Lutfi, A., Alsubahi, N., Alhazmi, F. N., Al-Mugheed, K., Anshasi, R. J., … & Albugami, M. (2023). The use of a Technology Acceptance Model (TAM) to predict patients’ usage of a personal health record system: The role of security, privacy, and usability. International journal of environmental research and public health, 20(2), 1347.

20 Togioka, B., Duvivier, D., & Young, E. (2024). Diversity and Discrimination in Health Care. StatPearls.

21 Tzanou, M. (2023). Health Data Privacy Under the GDPR. TAYLOR FRANCIS Limited.

22 Calnan, M. W., & Sanford, E. (2004). Public trust in health care: the system or the doctor?. BMJ Quality & Safety, 13(2), 92-97.

23 Laric, M. V., Pitta, D. A., & Katsanis, L. P. (2009). Consumer concerns for healthcare information privacy: A comparison of US and Canadian perspectives. Research in Healthcare Financial Management, 12(1), 93.

24 Seh, A. H., Zarour, M., Alenezi, M., Sarkar, A. K., Agrawal, A., Kumar, R., & Ahmad Khan, R. (2020, May). Healthcare data breaches: insights and implications. In Healthcare (Vol. 8, No. 2, p. 133). MDPI.

25 Yuninda, S. P., Pasma, S. A., & Mantoro, T. (2022, July). Patient Data Security in Telemedicine Services from Data Misuse in Health Practice. In 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED) (pp. 1-4). IEEE.

26 Tavani, H. T., & Grodzinsky, F. S. (2019). Responding to some challenges posed by the re-identification of anonymized personal data. Computer Ethics-Philosophical Enquiry (CEPE) Proceedings, 2019(1), 2.

27 Raub, M. (2018). Bots, bias and big data: artificial intelligence, algorithmic bias and disparate impact liability in hiring practices. Ark. L. Rev., 71, 529.

28 Balasubramaniam, N., Kauppinen, M., Hiekkanen, K., & Kujala, S. (2022, March). Transparency and explainability of AI systems: ethical guidelines in practice. In International Working Conference on Requirements Engineering: Foundation for Software Quality (pp. 3-18). Cham: Springer International Publishing.

29 Adeniyi, A. O., Arowoogun, J. O., Okolo, C. A., Chidi, R., & Babawarun, O. (2024). Ethical considerations in healthcare IT: A review of data privacy and patient consent issues. World Journal of Advanced Research and Reviews, 21(2), 1660-1668.

30 Duță, D. (2023). Responsible innovation. confidentiality, privacy and data protection. L’Europe Unie, 20(20), 27-35.

31 Said, A., Yahyaoui, A., & Abdellatif, T. (2023, November). HIPAA and GDPR Compliance in IoT Healthcare Systems. In International Conference on Model and Data Engineering (pp. 198-209). Cham: Springer Nature Switzerland.

32 Williamson, S. M., & Prybutok, V. (2024). Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Applied Sciences, 14(2), 675.

34 Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC medical informatics and decision making, 20, 1-19.

35 Bertl, M., Ross, P., & Draheim, D. (2023). Systematic AI support for decision-making in the healthcare sector: Obstacles and success factors. Health Policy and Technology, 12(3), 100748.

36 Gore, J. C. (2020). Artificial intelligence in medical imaging. Magnetic resonance imaging, 68, A1-A4.

 37 Schork, N. J. (2019). Artificial intelligence and personalized medicine. Precision medicine in Cancer therapy, 265-283.

38 Alshamrani, M. (2022). IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. Journal of King Saud University-Computer and Information Sciences, 34(8), 4687-4701.

39 Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., & Acharya, U. R. (2023). Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1485.

40 Khan, S. (2020). Artificial Intelligence Virtual Assistants (Chatbots) are Innovative Investigators. IJCSNS, 20(2).

41 Qureshi, R., Irfan, M., Gondal, T. M., Khan, S., Wu, J., Hadi, M. U., … & Alam, T. (2023). AI in drug discovery and its clinical relevance. Heliyon.

42 Zhang, H., Zhang, H., Zhang, Z., & Wang, Y. (2021). Patient privacy and autonomy: a comparative analysis of cases of ethical dilemmas in China and the United States. BMC Medical Ethics, 22, 1-8.

43 Schneeweiss, S. (2014). Learning from big health care data. N Engl J Med, 370(23), 2161-2163.

 44 Vinichenko, M. V., Narrainen, G. S., Melnichuk, A. V., & Chalid, P. (2021). The influence of artificial intelligence on human activities. Frontier Information Technology and Systems Research in Cooperative Economics, 561-570.

45 Larsson, S., & Heintz, F. (2020). Transparency in artificial intelligence. Internet Policy Review, 9(2).

56 Felzmann, H., Fosch-Villaronga, E., Lutz, C., & Tamò-Larrieux, A. (2020). Towards transparency by design for artificial intelligence. Science and engineering ethics, 26(6), 3333-3361.

47 Sapci, A. H., & Sapci, H. A. (2020). Artificial intelligence education and tools for medical and health informatics students: systematic review. JMIR Medical Education, 6(1), e19285.

48 Khang, A., Ragimova, N. A., Hajimahmud, V. A., & Alyar, A. V. (2022). Advanced technologies and data management in the smart healthcare system. In AI-Centric Smart City Ecosystems (pp. 261-270). CRC Press.

49 Lustgarten, S. D., Garrison, Y. L., Sinnard, M. T., & Flynn, A. W. (2020). Digital privacy in mental healthcare: current issues and recommendations for technology use. Current opinion in psychology, 36, 25-31.

50  Olatunji, I. E., Rauch, J., Katzensteiner, M., & Khosla, M. (2022). A review of anonymization for healthcare data. Big data.

51 Guidance, W. H. O. (2021). Ethics and governance of artificial intelligence for health. World Health Organization.

52 Arkedis, J., Creighton, J., Dixit, A., Fung, A., Kosack, S., Levy, D., & Tolmie, C. (2021). Can transparency and accountability programs improve health? Experimental evidence from Indonesia and Tanzania. World Development, 142, 105369.

53 Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H., & Langlotz, C. P. (2020). Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology, 295(3), 675-682.

54 Morley, J., Machado, C. C., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: a mapping review. Social Science & Medicine, 260, 113172.

55 Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22, 1-5.

56 Frank, E., & Olaoye, G. (2024). Privacy and data protection in AI-enabled healthcare systems.

57 Chintala, S. (2022). Data Privacy and Security Challenges in AI-Driven Healthcare Systems in India. Journal of Data Acquisition and Processing, 37(5), 2769-2778.

58 Mackenzie, I. S., Mantay, B. J., McDonnell, P. G., Wei, L., & MacDonald, T. M. (2011). Managing security and privacy concerns over data storage in healthcare research. Pharmacoepidemiology and Drug Safety, 20(8), 885-893.

59 Olatunji, I. E., Rauch, J., Katzensteiner, M., & Khosla, M. (2022). A review of anonymization for healthcare data. Big data.

60 Roy, S. (2022). PRIVACY PREVENTION OF HEALTH CARE DATA USING AI. Journal of Data Acquisition and Processing, 37(3), 769.

61 Ismail, K. B. (2023). ENSURING DATA PRIVACY AND SECURITY IN HEALTHCARE COMPUTER VISION AND AI APPLICATIONS: INVESTIGATING TECHNIQUES FOR ANONYMIZATION, ENCRYPTION, AND FEDERATED LEARNING. International Journal of Applied Machine Learning and Computational Intelligence, 13(12), 1-10.

62 Sepas, A., Bangash, A. H., Alraoui, O., El Emam, K., & El-Hussuna, A. (2022). Algorithms to anonymize structured medical and healthcare data: A systematic review. Frontiers in Bioinformatics, 2, 984807.

63 Creemers R., Webster G. Translation: Personal Information Protection Law of the People’s Republic of China. [(accessed on 14 September 2022)]. Available online: https://digichina.stanford.edu/work/translation-personal-information-protection-law-of-the-peoples-republic-of-china-effective-nov-1-2021/

64 Borda, A., Molnar, A., Neesham, C., & Kostkova, P. (2022). Ethical issues in AI-enabled disease surveillance: Perspectives from global health. Applied Sciences, 12(8), 3890.

65 Kasula, B. Y. (2021). Ethical and Regulatory Considerations in AI-Driven Healthcare Solutions. International Meridian Journal, 3(3), 1-8.

66 Li, F., Ruijs, N., & Lu, Y. (2022). Ethics & AI: A systematic review on ethical concerns and related strategies for designing with AI in healthcare. Ai, 4(1), 28-53.

67 Chintala, S. (2022). Data Privacy and Security Challenges in AI-Driven Healthcare Systems in India. Journal of Data Acquisition and Processing, 37(5), 2769-2778.

68  Prince, P. B., & Lovesum, S. J. (2020). Privacy enforced access control model for secured data handling in cloud-based pervasive health care system. SN Computer Science, 1(5), 239.

69 Ragesh, G. K., & Baskaran, K. (2016). Cryptographically enforced data access control in personal health record systems. Procedia Technology, 25, 473-480.

70 Sookhak, M., Jabbarpour, M. R., Safa, N. S., & Yu, F. R. (2021). Blockchain and smart contract for access control in healthcare: A survey, issues and challenges, and open issues. Journal of Network and Computer Applications, 178, 102950.

71 Liu, X., Glocker, B., McCradden, M. M., Ghassemi, M., Denniston, A. K., & Oakden-Rayner, L. (2022). The medical algorithmic audit. The Lancet Digital Health, 4(5), e384-e397.

72 Oala, L., Murchison, A. G., Balachandran, P., Choudhary, S., Fehr, J., Leite, A. W., … & Wiegand, T. (2021). Machine learning for health: algorithm auditing & quality control. Journal of medical systems, 45, 1-8.

73 Oala, L., Murchison, A. G., Balachandran, P., Choudhary, S., Fehr, J., Leite, A. W., … & Wiegand, T. (2021). Machine learning for health: algorithm auditing & quality control. Journal of medical systems, 45, 1-8.

دیدگاه و پرسش

برچسب‌ها: